Lower Bounds on Active Learning for Graphical Model Selection

نویسندگان

  • Jonathan Scarlett
  • Volkan Cevher
چکیده

We consider the problem of estimating the underlying graph associated with a Markov random field, with the added twist that the decoding algorithm can iteratively choose which subsets of nodes to sample based on the previous samples, resulting in an active learning setting. Considering both Ising and Gaussian models, we provide algorithm-independent lower bounds for high-probability recovery within the class of degree-bounded graphs. Our main results are minimax lower bounds for the active setting that match the best known lower bounds for the passive setting, which in turn are known to be tight in several cases of interest. Our analysis is based on Fano’s inequality, along with novel mutual information bounds for the active learning setting, and the application of restricted graph ensembles. While we consider ensembles that are similar or identical to those used in the passive setting, we require different analysis techniques, with a key challenge being bounding a mutual information quantity associated with observed subsets of nodes, as opposed to full observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Learning for Undirected Graphical Model Selection

This paper studies graphical model selection, i.e., the problem of estimating a graph of statistical relationships among a collection of random variables. Conventional graphical model selection algorithms are passive, i.e., they require all the measurements to have been collected before processing begins. We propose an active learning algorithm that uses junction tree representations to adapt f...

متن کامل

Variational Information Maximization for Feature Selection

Feature selection is one of the most fundamental problems in machine learning. An extensive body of work on information-theoretic feature selection exists which is based on maximizing mutual information between subsets of features and class labels. Practical methods are forced to rely on approximations due to the difficulty of estimating mutual information. We demonstrate that approximations ma...

متن کامل

The Quality of the Covariance Selection Through Detection Problem and AUC Bounds

We consider the problem of quantifying the quality of a model selection problem for a graphical model. We discuss this by formulating the problem as a detection problem. Model selection problems usually minimize a distance between the original distribution and the model distribution. For the special case of Gaussian distributions, the model selection problem simplifies to the covariance selecti...

متن کامل

Focused Active Inference

In resource-constrained inferential settings, uncertainty can be efficiently minimized with respect to a resource budget by incorporating the most informative subset of observations – a problem known as active inference. Yet despite the myriad recent advances in both understanding and streamlining inference through probabilistic graphical models, which represent the structural sparsity of distr...

متن کامل

Variational Chernoff Bounds for Graphical Models

Recent research has made significant progress on the problem of bounding log partition functions for exponential family graphical models. Such bounds have associated dual parameters that are often used as heuristic estimates of the marginal probabilities required in inference and learning. However these variational estimates do not give rigorous bounds on marginal probabilities, nor do they giv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017